资讯动态真实、正向、传递价值

当前位置:主页 > 专业攻略 >

Python数据分析可以用来做什么、有什么优势?

日期:2021-06-02 / 人气:

  随着大数据时代的来临和Python编程语言的火爆,可以说已经能和Java肩并肩了,但是还有很多人对Python还是不太了解,Python数据分析早已成为现在职场人的必备核心技能。
 
  那么利用Python数据分析可以做什么呢?简单来说,可以做到的内容有很多,比如检查数据表、数据表清洗、数据预处理、数据提取和数据筛选汇总等等。
 
Python
 
  1、检查数据表
 
  Python中使用shape函数来查看数据表的维度,也就是行数和列数。你可以使用info函数查看数据表的整体信息,使用dtypes函数来返回数据格式。Isnull是Python中检验空值的函数,你可以对整个数据表进行检查,也可以单独对某一列进行空值检查,返回的结果是逻辑值,包含空值返回True,不包含则返回False。使用unique函数查看唯一值,使用Values函数用来查看数据表中的数值。
 
  2、数据表清洗
 
  Python中处理空值的方法比较灵活,可以使用Dropna函数用来删除数据表中包含空值的数据,也可以使用fillna函数对空值进行填充。Python中dtype是查看数据格式的函数,与之对应的是astype函数,用来更改数据格式,Rename是更改列名称的函数,drop_duplicates函数删除重复值,replace函数实现数据替换。
 
  3、数据预处理
 
  数据预处理是对清洗完的数据进行整理以便后期的统计和分析工作,主要包括数据表的合并、排序、数值分列、数据分组及标记等工作。在Python中可以使用merge函数对两个数据表进行合并,合并的方式为inner,此外还有left、right和outer方式。使用ort_values函数和sort_index函数完成排序,使用where函数完成数据分组,使用split函数实现分列。
 
  4、数据提取
 
  主要是使用三个函数:loc、iloc和ix,其中loc函数按标签值进行提取,iloc按位置进行提取,ix可以同时按标签和位置进行提取。除了按标签和位置提起数据以外,还可以按具体的条件进行数据,比如使用loc和isin两个函数配合使用,按指定条件对数据进行提取。
 
  5、数据筛选汇总
 
  Python中使用loc函数配合筛选条件来完成筛选功能,配合sum和 count函数还能实现excel中sumif和countif函数的功能。Python中使用的主要函数是groupby和pivot_table。groupby是进行分类汇总的函数,使用方法很简单,制定要分组的列名称就可以,也可以同时制定多个列名称,groupby 按列名称出现的顺序进行分组。


  那么我们应该如何进行数据分析呢?这个时候Python出现在我们的眼前,作为数据分析的一大利器,它与其他数据分析工具的差别又在哪里呢?
 
  (1)语法简单精炼,适合初学者入门
 
  比起其他编程语言,Python的语法非常简单,代码的可读性很高,非常有利于初学者的学习。例如,在处理数据的时候,如果希望将用户性别数据数值化,也就是变成计算机可以运算的数字形式,这时便可以直接用一行列表推导式完成,十分简洁。
 
  (2)拥有一个巨大且活跃的科学计算社区
 
  Python在数据分析、探索性计算、数据可视化等方面都有非常成熟的库和活跃的社区,这使得Python成为数据处理的重要解决方案。在科学计算方面,Python拥有Numpy、Pandas、Matplotlib、Scikit-learn、IPython等一系列非常优秀的库和工具,特别是Pandas在处理中型数据方面可以说有着无与伦比的优势,并逐渐成为各行业数据处理任务的首选库。
 
  (3)拥有强大的通用编程能力
 
  Python的强大不仅体现在数据分析方面,而且在网络爬虫、Web等领域也有着广泛的应用,对于公司来说,只需要使用一种开发语言就可以完成全部业务成为可能。例如,我们可以使用Python的Scrapy爬虫框架收集数据,然后交给Pandas库做数据处理,最后使用Web框架Django给用户做展示,这一系列的任务可以全部用Python完成,大大地提高了公司的技术效率。
 
  (4)人工智能时代的通用语言
 
  在人工智能领域中,Python已经成为了最受欢迎的编程语言,这主要得益于其语法简洁、具有丰富的库和社区,使得大部分深度学习框架都优先支持Python语言编程。比如当今最火热的深度学习框架tensorflow,它虽然是使用C++语言编写的,但是对Python语言支持最好。
 
  (5)方便对接其它语言
 
  Python作为一门胶水语言,能够以多种方式与其它语言(比如C或Java语言)的组件“粘连”在一起,可以轻松地操作其它语言编写的库,这就意味着用户可以根据需要给Python程序添加功能,或者在其它环境系统中使用Python语言。
 
  看了这么多Python在使用数据分析时的优势,现在就开始学习Python吧~掌握了这一个利器,大家就可以下数据的海洋里游刃有余的遨游。
 
  Python

编辑:admin